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Abstract

Deriving structure-activity relationships is crucial for designing efficient catalysts.

To aid in this quest, data-driven methods such as machine learning (ML) are emerg-

ing. In this work, we incorporate ML tools with accurate density functional theory

(DFT) energetics, electronic and geometric features, in the context of designing effi-

cient molybdenum carbide (Mo2C)-based catalysts for biomass conversion. Previously,

it was shown that C-OH activation is the rate-determining step in the hydrodeoxy-

genation (HDO) reaction. Therefore, in this work, DFT was used to obtain accurate

barriers (Ea) and reaction energy (∆E) for the C-OH activation in HDO over the most

stable (111) and meta-stable facets (010, 101, and 110) of Mo2C and transition metal

doped Mo2C. The 101 facet was identified as the most active facet for C-OH activation.

While, doping of the active site with Zr and Nb was identified as promising strategy to

improve the activity. Further, scikit-learn’s ML models were used to obtain the best

primary features correlating with the Ea. Ridge Regression (RR) gives the best ML

model for predicting Ea with a test RMSE of 0.21 eV. SHapley Additive exPlanations

(SHAP) analysis was then performed which reveals that ∆E and d -band center are

the most important features contributing to the activity. Finally, SISSO was used to

validate RR model and SHAP results, and to obtain a 2-dimensional physically inter-

pretable generic-descriptor comprising of dopant’s local environment, d -band features,

and ∆E.

Introduction

Understanding structure-activity relationships of catalysts is a fundamental challenge in het-

erogeneous catalysis, crucial for rational catalyst design. High-throughput computational

chemistry and data-driven methods have been developed to address this challenge. Most

notably, Nørskov et al. have pioneered the use of the Brønsted-Evans-Polanyi (BEP) princi-

ple and linear scaling (LS) relationships to identify critical electronic and energy features of

metal catalysts that can correlate with external catalyst performance metrics such as reac-
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tion rate and TOF.1–3 The BEP relationship has since been applied extensively in de-signing

metal catalysts with improved activity for various reactions.4,5 However, with rapidly evolv-

ing catalyst space, complex catalysts such as transition metal oxides often deviate from the

BEP principle.6,7 LS relationships also break down for new and upcoming complex catalysts

such as transition metal carbides (TMCs).8 The BEP and LS relationships can break down

because their linear, few-descriptor form is specific to site geometry and mechanism.9,10

Further, almost intrinsic to heterogeneous catalysis, the nature of the active site is rather

complex, and the complicated reaction mechanism can often not be mapped by only using

one or two descriptors and a simple linear regression method.

To overcome the above-mentioned shortcomings, recently, exponential growth in com-

putational capacity, coupled with efficient machine learning (ML) algorithms, has enabled

the derivation of complex expressions that capture the nature of active sites and their

structure–activity relationships.11,12 Various ML methods have been developed and multi-

dimensional descriptors beyond linear scaling relationships have been identified to improve

structure-activity correlation and catalytic understanding.11 Among these, the Sure Indepen-

dence Screening and Sparsifying Operator (SISSO) has recently emerged as a particularly

powerful approach for constructing interpretable descriptors and capturing non-linear corre-

lations, as discussed below.13,14 SISSO enables complex feature construction and estimation

of catalyst activity by finding the best physically interpretable descriptors, even when only

a small training set is available. For example, Wang et al.15 established a general the-

ory of metal-support interactions (MSIs) for metal catalysts on oxide supports, grounded

in both metal-metal interactions (MMIs) and metal-oxygen interactions (MOIs). Using a

large dataset of experimentally measured adhesion energies, interpretable machine learn-

ing, and theoretical derivation, these authors derived a predictive and interpretable formula

for MSIs. Based on this they showed that for late transition metal catalysts, MMIs domi-

nate the support effects and encapsulation behavior, and formulated a principle that strong
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MMIs, rather than strong oxophilic MSIs, determine encapsulation occurrence. This theory

is validated by extensive experiments and simulations, providing a comprehensive frame-

work for understanding and designing supported metal catalysts. Building upon this, Shu

et al.12 identified that the topologically undercoordinated number, valence electron count,

lattice constant, and the reaction energy can be combined to form a 2-dimensional descrip-

tor that serves as the best interpretable descriptor for structure sensitivity and reaction

barriers. Similarly, Xu et al.16 applied SISSO for predicting the adsorption enthalpies of

the oxygen evolution reaction (OER) in-termediates over doped RuO2 and IrO2 surfaces.

These authors reported a test RMSE as low as 0.18 eV using clean-surface primary features

(electronegativity, d -band center, and d -band kurtosis), and 0.12 eV when including the

O* adsorption enthalpy as an additional feature. Overall, the SISSO-obtained de-scriptor

revealed local charge-transfer–related features as critical in predicting accurate adsorption

enthalpies. More recently, Lin et al.7 identified an optimal SISSO-derived descriptor for

CO dissociation barriers in iron-based Fischer–Tropsch catalysis. These authors derived a

4-dimensional descriptor combining five features: work function, C-vacancy formation en-

ergy, CO adsorption energy, coordination number, and active-site size, with the dominant

contribution arising from the C-vacancy formation energy. In combination with the reac-

tion energy term, this 4-dimensional descriptor effectively captured structure sensitivity and

reaction barriers. Collectively, these studies demonstrate the versatility and robustness of

SISSO, also show how it enables the discovery of material-specific, interpretable descriptors

that go beyond simple linear scaling relations and extend the applicability of ML models in

catalysis and materials science.

Many reactions on the orthorhombic molybdenum carbide (Mo2C) 101 surface cannot

be accurately simulated by one- or two-dimensional parametrizations, given the structural

complexity of both the catalytically active surface and the reactants.17,18 A good case in

point is the hydrodeoxygenation (HDO) of butyric acid over orthorhombic molybdenum car-
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bide (Mo2C) 101 surface. In previous work butanol dissociation, specifically C–OH bond

cleavage, was determined as the rate-determining step (RDS),17,19 More recently, we demon-

strated that C–OH bond dissociation plays a similarly crucial role in the case of W2C-based

catalysts as well.20 Subsequently, we modified the surfaces of Mo2C and tungsten carbide

(W2C) by introducing oxygen to model in situ formed oxycarbide-like species (Mo2COx and

W2COx).
20 Across both carbide and oxycarbide surfaces, microkinetic modeling (MKM)

results consistently revealed that C–OH bond dissociation in butanol is among the most

kinetically challenging steps. Based on these studies, we concluded that the C–OH activa-

tion barrier serves as a reliable descriptor for the overall catalytic activity of Mo and W

carbide-based systems.

However, accurately estimating this barrier is highly sensitive to the choice of the initial

surface model, and locating the transition state is particularly challenging due to aforemen-

tioned structural complexity of both the catalyst surfaces and the reactants. Additionally,

transition state (TS) calculations are computationally expensive and time-consuming. In

our previous work, we performed the d -band analysis in an effort to correlate the C-OH ac-

tivation barrier, Ea(C-OH), with various electronic and geometric descriptors. We observed

a notable correlation between Ea(C-OH) and properties such as the atomic radius of the

doped active metal site and its d -band filling. Additionally, a BEP relationship between C-

OH activation barrier and ∆E was obtained (R2 = 0.79). While these correlations provided

qualitative insights, they were insufficient for quantitatively predicting activation barriers as

these correlations were based on a very small dataset (1 phase, 1 facet, 11 dopants).

Therefore in the current work we aim to obtain a generic descriptor correlating structure

and activity in hydrodeoxygenation reactions on Mo2C catalysts. In this, we cover both

the most stable facet 111 (with 3 unique facet terminations) and three meta-stable facets

(101, 010, and 110), and for each facet, 11 dopants (Ti, V, Cr, Fe, Co, Ni, Zr, Nb, W, Pt,
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and Au) were taken into consideration to evaluate their influence on the C-OH activation

barrier. To achieve this goal, we evaluated scikit-learn ML models,21 specifically including

the Ridge Regressor, to predict the activation barrier, and subsequently applied SHapley

Additive exPlanations (SHAP) - a unique and powerful analysis tool traditionally used and

designed specifically for biomedical applications to understand the output of a ML model

- for a quantitative evaluation.22,23 Based on these outcomes, we then used SISSO14 to

derive an interpretable mathematical model that retains the underlying physics. Finally,

the important features identified using the scikit-learn ML model and SHAP analysis were

compared with the best SISSO descriptors, which clearly points to the significant potential of

this approach. Overall, we successfully obtained a 2-dimensional descriptor engineered using

primary energy (∆E), electronic (εdsk↓ , εdf↓ , BEM−O), and geometry (Rd, CNC) features.

These results further validated the SHAP analysis as all of these features, except BEM−O,

were appeared as the most important features.

Results and Discussion

Data Generation

The C-OH bond breaking barriers of n-butanol (C4H8OH → C4H8 + OH) were calculated

over the stable orthorhombic Mo2C-based catalysts. For this purpose, the most stable facets

of the orthorhombic Mo2C catalyst reported in the literature were used, as shown in Figure 1,

i.e., 010, 101, 110, 111 (ter1), 111 (ter2), and 111 (ter3).24 The Wulff construction in Figure 1

is obtained at a carbon chemical potential of -10.1 eV, i.e., at a carburization ability similar

to CH4/H2, which is used for preparing Mo2C catalysts. All the facets used were Mo/C

mixed-terminated to provide multiple active sites for the reaction to occur, making them

more active surfaces in general.25

Table 1 (Mo column) shows that for pure Mo2C catalysts, 101 surface is the most active,

followed by 010, 111-ter1, 111-ter3, 111-ter2, and 110 surfaces. Further, in all the facets, the
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Figure 1: Wulff construction for orthorhombic Mo2C catalyst and the facets chosen in this
work based on the surfaces exposed.

active Mo site was doped with the following transition metals: Ti, V, Cr, Fe, Co, Ni, Zr, Nb,

W, Pt, or Au. The C-OH activation barriers of butanol were evaluated upon heteroatom

doping of the active metal site, and reported in Table 1. These results show that doping

the active metal site with Zr and Nb reduces the C-OH activation barrier over all facets,

irrespective of the specific surface structures. This further supports our previous work on

butanol dissociation over Mo2C (101) surface, where it was found that doping with Zr or Nb

improves the activity for C-OH bond activation.19 It is also evident that meta-stable facets

(010, 110, and 101) are more active than the most stable 111 facet.

Table 1: The C-OH activation barriers as a function of facets and dopants (in eV).

Facet/dopant Ti V Cr Fe Co Mo Ni Zr Nb W Pt Au
010 0.80 0.88 0.99 1.16 0.97 0.94 1.01 0.71 0.71 0.78 1.28 NaN
110 0.70 1.26 1.60 NaN NaN 1.58 1.07 1.01 0.91 1.01 1.64 2.34
101 0.95 0.77 1.00 1.32 1.63 0.83 1.59 0.54 0.58 0.78 1.60 NaN
111-ter1 1.02 1.04 1.34 NaN NaN 1.25 1.53 0.85 0.82 0.81 1.70 1.88
111-ter2 1.2 1.24 1.44 NaN 1.94 1.54 NaN 1.05 0.93 0.96 2.35 NaN
111-ter3 1.23 1.21 1.46 1.90 NaN 1.26 NaN 0.98 0.88 0.97 2.35 2.50

*NaN: the cases where a TS was not stabilized and hence excluded from this work.

Further, electronic structure analysis and geometry analysis were performed to obtain the

potential primary features of activity in Mo2C-based catalysts for C-OH activation. The data
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Table 2: List of energy, electronic, and geometric features considered for ML models and
SISSO analysis.

Electronic/Geometric feature Symbol
Atomic radius Rd

Coordination number (dopant with metal) CNM

Coordination number (dopant with carbon) CNC

Coordination number (dopant) CNtotal

Common coordination number (in stable oxides) CNoxides

Closest dopant-metal bond distance dMM

Closest dopant-carbon bond distance dMC

d -band centre (up spin/down spin) εdc↑/εdc↓
d -band filling (up spin/down spin) εdf↑/εdf↓
d -band skewness (up spin/down spin) εdsk↑/εdsk↓
d -band kurtosis (up spin/down spin) εdk↑/εdk↓
d -band width (up spin/down spin) εdw↑/εdw↓

Number of valence electrons Ve

Pauling’s electronegativity (dopant) χP

Electron affinity EA
1st ionization energy (dopant) IP 1st

Binding energy (dopant-oxygen) in stable oxides BEM−O

Reaction energy (C-OH activation) ∆E

we obtained contain the C-OH activation barrier (Ea), reaction energy (∆E), bond distance

between the dopant (M) and the closest Carbon atom (dMC), bond distance between the

dopant and the closest molybdenum atom (dMM), coordination number of the active metal

site with metal or carbon in the first-shell (CNM/C), and the atomic radius of the active metal

site (Rd). Furthermore, clean surface properties such as active metal site’s d -band filling,

d -band center, d -band kurtosis, d -band skewness, d -band width, electronegativity, first-

ionization energy, electron affinity, and binding energy with Oxygen (BEM-O) are evaluated.

In total, this implies that a set containing 61 samples, each containing information about

23 primary features, were investigated (Table 2). The correlation matrix for the different

primary features is shown in Figure 2. These correlations show that there are some features

correlated with each other; however, no single rigorous descriptor has a significant correlation

with the targeted C-OH activation barrier (Ea).

From the correlation matrix and linear regression,26 we derive the BEP relationship
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Figure 2: Correlation matrix between the activation barrier of C-OH bond activation Ea and
primary energy, electronic, and geometric features.

between the activation energy Ea and reaction energy ∆E for all the facets and dopants

combined. The R2 score of 0.42 indicates that the different facets of Mo2C behave differently,

and confirm that the BEP relationship is broken, as only facets 111-ter3 (R = 0.99), 101 (R

= 0.79), and 111-ter1 (R = 0.77) show a strong BEP relationship, while others facets such

as 111-ter2 (R = 0.48) and 110 (R = 0.37) show a very weak linear BEP relation-ship. In

contrast, the 010 facet (R = 0.06) does not show a BEP relationship at all. Hence, more

rigorous scikit-learn-based regressors were applied.
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Prediction using scikit-learn based ML methods

Figure 3: Test RMSE for the different scikit-learn ML regressors. Note: the influence is
quantified by Cook’s distance - a statistical measure used in regression analysis to identify
influential data points that have a large impact on the regression model’s coefficients.

The regression problem was first approached using the ML algorithms present within

Python’s scikit-learn package. The ML models used here are K-Nearest Neighbors Regres-

sor (KNN), Kernal Ridge Regressor (KRR), Gradient Boosting Regressor (GBR), Ridge

Regressor (RR), Extreme Gradient Boosting Regressor (XGBR), Support Vector Regressor

(SVR), Random Forest Regressor (RFR), and Extra Tress Regressor (ETR). For all these

regressors, the 85:15 training-to-testing ratio was used for splitting. The results of these

algorithms for prediction of Ea(C-OH) are in Figure 3. Ridge Regression (RR) emerges as

the best performer (R2=0.79, RMSE = 0.21 eV), indicating that the relationship between

features and DFT activation energies is largely linear, so a simple but properly regularized

linear model suffices. Further, tree-based methods (RFR, ETR, XGBR) also perform well, as

they flexibly capture both linear and non-linear trends, though without outperforming RR.

In contrast, kernel-based (SVR, KRR) and distance-based (KNN) models perform worse,
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reflecting sensitivity to hyperparameters and limited data. On a par with KRR, Gradient

Boosting (GBR) also shows a weak performance (R2 = 0.59, RMSE = 0.29 eV), likely due

to underfitting. Of course, all the ML models outperform a simple linear BEP relationship

(Figure 3), due to the capture of any non-linear trends.

These results show that ML models do not perform well on test data as the highest

R2 score achieved is 79% for RR model with a test RMSE of 0.21 eV, which does not

breach the DFT accuracy, i.e., ±0.20 eV. Although the ML models are not good enough

for descriptor-based predictions, they could be used for calculating the feature importance.

Therefore, the best ML model, RR, was selected based on the lowest test RMSE (0.21

eV). While the scikit-learn-based machine learning models predict the activation barrier

with reasonable accuracy, there are several limitations. First, these models typically do

not provide an explicit mathematical expression for the prediction model, as they are often

based on decision trees and hence are often referred to as blackbox models. Second, the

analysis does not incorporate dimensional considerations, making the resulting models purely

mathematical rather than physically meaningful. Finally, the limited size of the dataset

weakens the predictive performance, as such ML models generally require large amounts of

data to achieve robustness. Therefore, the SHAP analysis was performed to understand the

output of the best ML model, RR, and to calculate the feature importance of the primary

descriptors.

Feature Importance – SHAP analysis

Next we applied SHAP analysis – as indicated above: developed for the biomedical field, but

now applied to catalysis – to gain insights into the nature of the active site by understanding

the synergistic interactions of different electronic, energy, and geometric features to render

catalytic activity.27–31 The SHAP summary plots (Figure 4) generated from the RR model

provide a detailed view of how different descriptors contribute to the model’s predictions,
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Figure 4: SHAP analysis. (A) Feature importance based on the RR model. (B) Spread of
the feature values and its influence on the activation barrier prediction.

i.e., C-OH activation barrier (Ea). Each feature is represented on the y-axis and is ranked by

its average absolute SHAP value, which reflects its importance in the model (Figure 4A). In

Figure 4B, the x -axis shows the SHAP values for each feature across the dataset, indicating

whether a particular feature increases or decreases the model’s output Ea for a given sample.

Each point represents a single observation, and the color corresponds to the actual value of

the feature — red for high, blue for low.

The SHAP analysis highlights the relative importance of different descriptors in predict-

ing the C-OH activation energy (Ea). Among all descriptors, the most impactful features

(with mean |SHAP| < 0.04) are the reaction energy (∆E), the up-spin d -band center (εdc↑),

the dopant’s coordination number with nearby Carbon atoms (CNC), the up-spin d -band
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skewness (εdsk↑), and the closest dopant-carbon distance (dMC). These descriptors show a

strong positive contribution to the model’s predictions. High values of ∆E, CNC , and εdsk↑

(red points) increase Ea, whereas low values (blue points) reduce Ea, confirming a strong

relationship between the electronic structure and catalytic performance, whereas this trend

is exactly opposite for εdc↑ and dMC . Moderately important features (0.03 > mean |SHAP|

> 0.04) include the dopant’s atomic radius (Rd) and , and first ionization potential (IP 1st).

For example, larger Rd values are associated with lower Ea, consistent with our earlier find-

ings.19 Similarly, lower CNC tends to reduce Ea by creating a softer metal coordination

environment. These top 7 features (Figure 4A) represent a mix of electronic and geometric

effects that largely control the Ea. Additional descriptors such as dopant’s CN in its most

stable oxide form (CNoxides), up-spin d -band width (εdw↑), down-spin d -band center (εdc↓),

down-spin d -band filling (εdf↓), distance with the closest metal (dMM), electron affinity (EA),

valence electron count (Ve), and down-spin d -band skewness (εdsk↓) also show noticeable in-

fluence, but markedly smaller (0.01 > mean |SHAP| > 0.03). Many of these features are

also directly positively or negatively correlated with the top features. Then some of the

least influential descriptors include the dopant’s electronegativity (χP ), binding energy with

oxygen (BEM–O), CN with nearby metals (CNM), total coordination number (CNtotal), and

some d -band properties (e.g., εdk↑ , εdk↓ , εdf↑ , εdw↓). These features contribute minimally, as

their SHAP values cluster around zero. These features are likely redundant or correlated

with stronger descriptors, and are candidates for feature reduction.

In conclusion, the SHAP analysis not only ranked the importance of various molecular

features, but also revealed how specific values of each descriptor alter the prediction of Ea

and effectively highlighted the most sensitive and important features in our dataset. Fur-

thermore, SHAP analysis demonstrates that both electronic descriptors (εdc↑ , εdsk↑ , IP
1st)

and geometric descriptors (CNC , dMC , Rd), combined with energy descriptor ∆E, signif-

icantly influence Ea predictions, with ∆E and εdc↑ emerging as the dominant factors. It
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is important to note that while SHAP analysis provides a quantitative evaluation, it pro-

vides little under-standing and does not account for the synergistic effects between different

primary features. Therefore, in the following section we use SISSO to obtain the complex

interpretable descriptor of activity.

Prediction using SISSO method

Figure 5: Training and testing RMSE using SISSO as a function of feature complexity per
dimension.

The SISSO method is employed to capture the synergistic effects of electronic and ge-

ometric features, and to develop a quantitative model for predicting the C-OH activation

barriers. SISSO also offers dimensional analysis functionality, ensuring that the engineered

features are physically interpretable. The results obtained using SISSO are presented in

Figure 5. Figure 5(A) shows that a SISSO model becomes better as a function of dimen-

sions. Naturally and fundamentally, the more terms (primary features) there are in the linear

model, the better the model can capture the behavior of the catalyst. Similarly, each model

improves as a function of feature complexity, as the interaction between different electronic

and geometric parameters is accounted for. In these models, values as low as 0.07 eV of
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RMSE were obtained on the training set, which is way below the DFT-level error margin of

±0.20 eV. It is evident that more terms in the model and more feature complexity typically

render a better model for predicting the C-OH activation barriers.

Although SISSO models perform better on seen (training) data, they do not necessarily

guarantee a good prediction over unseen (test) data. This can be seen from Figure 5B, in

which there is no linear/monotonous trend in test RMSE’s as a function of dimension and

feature complexity. In fact, in some cases, like for 4-dimension and 6-feature complexity, it

yields a very poor test RMSE of 0.76 eV.

The best SISSO models, based on test RMSE, we obtain which breach the DFT-level

error margin are:

Best 2D model:

Ea = 1.12·
(
eεdsk↓−∆E − log(Rd)

)
− 0.0004·

(
BEM−O

(εdf↓ · CNC)− e−∆E

)
+ 7.04 (1)

Best 3D model:

Ea = −0.02 · (CNoxides ∗CNC)∗εdc↑ +1.64·
(

∆E
3
√
BEM−O

)
+4.78·

(
|CNoxides − CNM |

∆E

)
+1.28

(2)

Best 5D model:

Ea = 0.007 · IP
1st

dMC

+22.44 ·
εdsk↑

BEM−O

+0.56 · ∆E

CNC

+0.06 · CNoxides

∆E
− 0.002 · Rd

∆E
− 0.66 (3)

It is evident from the three mathematical expressions mentioned above that any generic

descriptor derived using SISSO contains contributions combinedly from the primary elec-

tronic features and geometric features. More specifically, the dopant’s d -band features,

contributing explicitly to ∆E, and dopant’s local environment (coordination number and
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atomic radius) dominate these generic descriptors. Interestingly, these primary descriptors

dominate the feature importance in Figure 4A as well. Together, these two analysis (SHAP

and SISSO) complement each other. Therefore, from these results, it can be established that

the reaction energy (∆E) combined with the dopant’s d -band features (εdsk↓ , εdf↓) and its

local environment (Rd, CNC) strongly influence the activity of a given Mo2C-based catalyst.

As highlighted in the introduction, the purpose of using SISSO and SISSO-like mul-

tidimensional analysis tools is to obtain the least complex descriptor of activity that is

physically interpretable as well. Hence, the 2-dimensional with 4-feature complexity descrip-

tor obtained from SISSO is selected as the best generic descriptor. It is very important to

mention here that although these results offer some physical insight, the underlying model

remains challenging to interpret. Nevertheless, the obtained 2D descriptor was then used

to recalculate the activation barriers for all the training and testing data, as in Figure 6A,

and then compared with the popular BEP relationship (Figure 6B). It is clear that SISSO-

obtained 2D descriptor performs significantly better in predicting the activation barrier (R2

= 0.83, RMSE = 0.17 eV) compared to the BEP relationship (R2 = 0.42, RMSE = 0.34

eV). Figure 6 also shows the influence of each value on x -axis on the model’s prediction of

Ea. This influence is quantified by Cook’s distance - a statistical measure used in regression

analysis to identify influential data points, or outliers, that have a large impact on the re-

gression model’s coefficients. The greater number of such larger points (or outliers) heavily

influences the model’s prediction, rendering a bad BEP relationship, as is the case in Figure

6B.

On the other hand, comparing the SISSO-2D results with the scikit-learn’s ML models

shows that the best scikit-learn model (RR) does an okay job in predicting the activation

barrier (R2 = 0.79, RMSE = 0.21 eV). However, it fails to breach the DFT-level error

margin of ±0.20 eV. Additionally, RR does not provide an explicit mathematical expression

for the underlying model, unlike SISSO. Overall, it is shown in this work that despite the
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Figure 6: (A) Correlation of the SISSO-predicted Ea with the DFT-calculated Ea. (B) BEP
relationship using DFT-calculated Ea.

small dataset, containing 61 samples, SISSO is able to produce a generic and, to some

degree, physically interpretable descriptor for evaluating the C-OH activation barrier for

Mo2C-based catalysts. Ultimately, Figure 7 highlights the most important local electronic

and geometric primary features, as identified with SHAP and SISSO analyses, governing

the catalytic activity of Mo2C-based catalysts for C-OH bond activation. These features

essentially reflect the distinct local environment of the active site.

Conclusions

This study demonstrates that for complex surface catalysts (Mo2C) the linear scaling BEP

relationship does not hold, and that machine learning (ML) tools can be effectively used to

extract physically meaningful descriptors that allow for an accurate prediction of the transi-

tion state energy. Scikit-learn’s ML models generate a descriptor-based prediction of Ea that

outperforms the traditional BEP relationship, but not with sufficient precision and without

providing interpretable descriptors. Analysis of the output of the best ML model (RR) by
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Figure 7: Scheme to highlight the majorly contributing primary descriptors controlling ac-
tivity of Mo2C-based catalysts.

SHAP reveals that the reaction energy (∆E) and the dopant’s d -band center contribute most

in predicting the Ea. Finally, SISSO is used to obtain a low-dimensional physically inter-

pretable descriptor, and to validate the findings from scikit-learn’s ML model and SHAP

analysis. It is found that a 2D descriptor containing contributions from the electronic fea-

tures (d -band filling, d -band skewness, and ∆E) and geometric features (atomic radius and

dopant’s CN with C atoms) can predict the activity of Mo2C-based catalysts (R2 = 0.83,

RMSE = 0.17 eV), which is within DFT-level error margin of ±0.20 eV and better than any

of the above. Our results predict that the local environment of active metal sites plays a

key role in C-OH bond activation. Meeta-stable 101 and 010 surfaces are the most active,

and surface heteroatom doping with Zr and Nb is a promising strategy to improve the per-

formance of Mo2C-based catalysts. This descriptor-activity relationship needs to be further

validated for other transition metal carbide-based system for its generalized applicability.
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Computational Details

DFT

All DFT calculations have been performed using the Vienna Ab Initio Simulation Pack-

age (VASP) and the Perdew-Burke-Ernzerhof functional as implemented in there,32,33 with

Grimme’s DFT-D3BJ dispersion corrections.34,35 The kinetic energy cut-off of the plane wave

basis set was set to 500 eV. The convergence criterion for energy calculation and structure

relaxation was set to a self-consistent field threshold of 10−5 eV, and a maximum force thresh-

old of 0.05 eV/Å. Γ-centered k-meshes of the size of 6 × 6 × 6 and 2 × 2 × 1 were used for

sampling the Brillouin zone in the case of bulk and slab models, respectively. Gaussian-type

smearing with a width of 0.05 eV was applied for the electronic energy density of states. For

identifying the transition states, the climbing-image nudged elastic band (CI-NEB) method

was used, and frequency analysis is done on the obtained transition state to confirm that

there was only one imaginary frequency along the reaction coordinate.36 For CI-NEB cal-

culations, the maximum force threshold of 0.10 eV/Å was implemented. Dipole corrections

were applied in the vacuum (z) direction. The bulk structure of orthorhombic Mo2C (mp-

1552) was obtained from the Materials Project website and was fully relaxed. The obtained

lattice parameters for Mo2C: a = 4.75 Å, b = 5.23 Å, c = 6.05 Å (from experiments: a =

4.74 Å, b = 5.21 Å, c = 6.03 Å),37 are in good agreement with the experimentally re-ported

values. From the optimized bulk(s), we cleaved the most stable 111 surface and metastable

010, 110, and 101 surfaces. Depending on the chosen facet we built slab models, deemed to

be a big enough surface for the butanol C-OH activation reaction, with two or three stoichio-

metric layers of Mo2C. For all the slab models, a vacuum distance of 15 Å was introduced

in the z-direction to minimize interaction with the periodic images. The bottom one or two

stoichiometric layers, depending on the chosen facet, of the supercell were fixed to reduce

the computational cost of the calculations and to mimic the bulk. Further, the metal active

site in each of these facets was doped with relevant metals listed in Section 3.1. The cif files
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for all the slab models used in this work is provided in the SI.

The adsorption energies (Eads), reaction energies (∆E), and activation barriers (Ea) were

calculated as follows:

Eads = Eslab+reactant − Eslab − Ereactant (4)

∆E = Eproduct − Ereactant (5)

Ea = Etransition state − Ereactant (6)

Here, Eslab+reactant is the total energy of the slab with a reactant adsorbed on it, Eslab is the

total energy of the clean slab, Ereactant and Eproduct are the total energies of the reactants

and products of each elementary reaction step, and Etransition state is the total energy of the

transition state (TS). The electronic structure parameters, such as dopant’s d -band center

and d -band filling, are derived from the density of states (DOS) and were calculated using

Python’s pymatgen package.38

X-band filling (X = s, p, d) was calculated as:

fx =

∫ Fermi

−∞ ρ(ε)∫∞
−∞ ρ(ε)

(7)

Here, ε means energy and ρ(ε) means the density of states.

The unoccupied d -band center was calculated as:

εd−un =

∫∞
Fermi

ερ(ε)∫∞
−∞ ρ(ε)

(8)

SISSO

The sure independence screening and sparsifying operator (SISSO)14 in a Fortran-based

code was used to efficiently extract relevant material descriptors from huge and strongly

correlated feature spaces, even when only small training sets are available. The SISSO ap-
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proach finds the best descriptor by combining material’s features (electronic, geometric, and

energy properties), identifies the most correlated features and discards the irrelevant ones,

and expresses the descriptor-property relationship in the form of a mathematical function,

also known as the SISSO-derived model. A generic SISSO model to predict the material’s

property (PSISSO) can be expressed as a linear combination of N -dimensional descriptors

(Φi):

P SISSO =
N∑
i=0

ciΦi (9)

Here ci’s are the fitting coefficients. n ϵ (1,6), and i ϵ (1,5).

While,

Φi = ∪n
i=1Ĥ

(m)[ϕ1, ϕ2],∀ϕ1, ϕ2 ∈ Φi−1 (10)

Here, the Ĥ is a set of mathematical operators considered for constructing complex features

by combining primary features, e.g. ϕ1 and ϕ2 in eq. 10. The Ĥ in this work contains the

following operators:

Ĥ(m) = I,+,−, ∗, /, exp, log, | − |,√,−1 ,2 ,3 (11)

The superscript m indicates that when applying Ĥ(m) to primary features ϕ1 and ϕ2 a dimen-

sional analysis is performed, which ensures that only physically meaningful combinations are

retained, i.e., only primary features with the same unit are added or subtracted. Therefore,

the complexity of a SISSO model depends on i) dimensionality: the number of linear terms

in the model PSISSO (eqn. 9), and ii) feature complexity: the number of operators included

in Φi (eqn. 10).

Scikit-learn ML-Model’s Hyperparameters

Following are the scikit-learn21 ML models used in this study, and their corresponding hy-

perparameters as optimized using the grid method: RR (alpha = 10), XGBR (learning rate

= 0.01, max depth = 7, n estimators = 500, subsample = 0.8), RFR (max depth = None,
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min sample split = 2, n estimators = 100), ETR (max depth = 10, min sample split = 2, n

estimators = 500), SVR (C = 100, gamma = 0.01, kernal = poly), KNN (n neighbors = 3,

p =1, weights = uniform), GBR (learning rate = 0.2, max depth = 3, n estimators = 300),

and KRR (alpha = 1.0, gamma = 0.1, kernal = polynomial).

SHAP

Built on the foundational work by Kononenko and Štrumbelj,39,40 the SHAP (SHapley Ad-

ditive exPlanations)22,41 is a widely used tool for interpreting ML predictions. The Shapley

value for a feature i represents its contribution to the prediction, calculated as:

ϕi =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |!
[f(S ∪ {i})− f(S)] (12)

where, N is the set of all features, S is a subset of features that does not include i, f(S) is

the model’s prediction using only features in S, and the fraction is a weighting term ensuring

fairness across all possible feature orders. The term [f(S ∪ {i})− f(S)] is the marginal

contribution of feature i when added to the subset S. The sum averages this marginal

contribution over all possible subsets of features, so no feature is favored just because it’s

considered earlier or later. For any single instance x, SHAP produces an additive explanation:

f(x) = ϕ0 +
M∑
i=1

ϕi (13)

where ϕ0 is the baseline value (average model output over the dataset) and each ϕi is the

contribution of feature i for that specific prediction. By simulating the effect of removing

each feature (and considering all possible combinations), SHAP assigns each feature a value

representing its contribution to pushing the prediction up or down. This allows to explain

both individual predictions (local explanations) and the model’s general behavior across the

dataset (global explanations). Finally, summary plots were obtained which include ranking
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features by importance and showing the direction of their effect.
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